Evolution and spermatogenesis.

نویسندگان

  • Helen White-Cooper
  • Nina Bausek
چکیده

Sexual reproduction depends on the production of haploid gametes, and their fusion to form diploid zygotes. Here, we discuss sperm production and function in a molecular and functional evolutionary context, drawing predominantly from studies in model organisms (mice, Drosophila, Caenorhabditis elegans). We consider the mechanisms involved in establishing and maintaining a germline stem cell population in testes, as well as the factors that regulate their contribution to the pool of differentiating cells. These processes involve considerable interaction between the germline and the soma, and we focus on regulatory signalling events in a variety of organisms. The male germline has a unique transcriptional profile, including expression of many testis-specific genes. The evolutionary pressures associated with gene duplication and acquisition of testis function are discussed in the context of genome organization and transcriptional regulation. Post-meiotic differentiation of spermatids involves very dramatic changes in cell shape and acquisition of highly specialized features. We discuss the variety of sperm motility mechanisms and how various reproductive strategies are associated with the diversity of sperm forms found in animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rates of protein evolution are positively correlated with developmental timing of expression during mouse spermatogenesis.

Male reproductive genes often evolve very rapidly, and sexual selection is thought to be a primary force driving this divergence. We investigated the molecular evolution of 987 genes expressed at different times during mouse spermatogenesis to determine if the rate of evolution and the intensity of positive selection vary across stages of male gamete development. Using mouse-rat orthologs, we f...

متن کامل

Contrasting Levels of Molecular Evolution on the Mouse X Chromosome.

The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution-di...

متن کامل

Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes.

The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translatio...

متن کامل

NEW RESEARCH HORIZON Review Sperm competition and the evolution of spermatogenesis

Spermatogenesis is a long andcomplexprocess that, despite the sharedoverall goal of producing themale gamete, displays striking amounts of interspecific diversity. In this review, we argue that sperm competition has been an important selection pressure acting on multiple aspects of spermatogenesis, causing variation in the number andmorphology of sperm produced, and in themolecular and cellular...

متن کامل

Evaluating the Relationship between Spermatogenic Silencing of the X Chromosome and Evolution of the Y Chromosome in Chimpanzee and Human

Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermat...

متن کامل

The Composite Regulatory Basis of the Large X-Effect in Mouse Speciation.

The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 365 1546  شماره 

صفحات  -

تاریخ انتشار 2010